Mechanics of Materials 2nd edition by Andrew Pytel – Ebook PDF Instand Download/DeliveryISBN: 1133104274, 978-1133104278
Full dowload Mechanics of Materials 2nd edition after payment
Product details:
ISBN-10 : 1133104274
ISBN-13 : 978-1133104278
Author: Andrew Pytel
The second edition of MECHANICS OF MATERIALS by Pytel and Kiusalaas is a concise examination of the fundamentals of Mechanics of Materials. The book maintains the hallmark organization of the previous edition as well as the time-tested problem solving methodology, which incorporates outlines of procedures and numerous sample problems to help ease students through the transition from theory to problem analysis. Emphasis is placed on giving students the introduction to the field that they need along with the problem-solving skills that will help them in their subsequent studies. This is demonstrated in the text by the presentation of fundamental principles before the introduction of advanced/special topics.
Mechanics of Materials 2nd Table of contents:
CHAPTER 1
Stress 1
1.1 Introduction 1
1.2 Analysis of Internal Forces; Stress 2
1.3 Axially Loaded Bars 4
a. Centroidal (axial) loading 4
b. Saint Venant’s principle 5
c. Stresses on inclined planes 6
d. Procedure for stress analysis 7
1.4 Shear Stress 18
1.5 Bearing Stress 19
CHAPTER 2
Strain 31
2.1 Introduction 31
2.2 Axial Deformation; Stress-Strain
Diagram 32
a. Normal (axial) strain 32
b. Tension test 33
c. Working stress and factor of safety 36
2.3 Axially Loaded Bars 36
2.4 Generalized Hooke’s Law 47
a. Uniaxial loading; Poisson’s ratio 47
b. Multiaxial loading 47
c. Shear loading 48
2.5 Statically Indeterminate Problems 54
2.6 Thermal Stresses 63
CHAPTER 3
Torsion 75
3.1 Introduction 75
3.2 Torsion of Circular Shafts 76
a. Simplifying assumptions 76
b. Compatibility 77
c. Equilibrium 77
d. Torsion formulas 78
e. Power transmission 79
f. Statically indeterminate problems 80
3.3 Torsion of Thin-Walled Tubes 91
*3.4 Torsion of Rectangular Bars 99
CHAPTER 4
Shear and Moment in Beams 107
4.1 Introduction 107
4.2 Supports and Loads 108
4.3 Shear-Moment Equations and
Shear-Moment Diagrams 109
a. Sign conventions 109
b. Procedure for determining shear
force and bending moment
diagrams 110
4.4 Area Method for Drawing Shear-Moment
Diagrams 122
a. Distributed loading 122
b. Concentrated forces and couples 124
c. Summary 126
CHAPTER 5
Stresses in Beams 139
5.1 Introduction 139
5.2 Bending Stress 140
a. Simplifying assumptions 140
b. Compatibility 141
c. Equilibrium 142
d. Flexure formula; section modulus 143
e. Procedures for determining bending
stresses 144
5.3 Economic Sections 158
a. Standard structural shapes 159
b. Procedure for selecting standard
shapes 160
5.4 Shear Stress in Beams 164
a. Analysis of flexure action 164
b. Horizontal shear stress 165
c. Vertical shear stress 167
xi
* Indicates optional sections.
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
d. Discussion and limitations of the shear
stress formula 167
e. Rectangular and wide-flange
sections 168
f. Procedure for analysis of shear
stress 169
5.5 Design for Flexure and Shear 177
5.6 Design of Fasteners in Built-Up
Beams 184
CHAPTER 6
Deflection of Beams 195
6.1 Introduction 195
6.2 Double-Integration Method 196
a. Di¤erential equation of the elastic
curve 196
b. Double integration of the di¤erential
equation 198
c. Procedure for double integration 199
6.3 Double Integration Using Bracket
Functions 209
*6.4 Moment-Area Method 219
a. Moment-area theorems 220
b. Bending moment diagrams by
parts 222
c. Application of the moment-area
method 225
6.5 Method of Superposition 235
CHAPTER 7
Statically Indeterminate Beams 249
7.1 Introduction 249
7.2 Double-Integration Method 250
7.3 Double Integration Using Bracket
Functions 256
*7.4 Moment-Area Method 260
7.5 Method of Superposition 266
CHAPTER 8
Stresses Due to Combined Loads 277
8.1 Introduction 277
8.2 Thin-Walled Pressure Vessels 278
a. Cylindrical vessels 278
b. Spherical vessels 280
8.3 Combined Axial and Lateral
Loads 284
8.4 State of Stress at a Point
(Plane Stress) 293
a. Reference planes 293
b. State of stress at a point 294
c. Sign convention and subscript
notation 294
8.5 Transformation of Plane Stress 295
a. Transformation equations 295
b. Principal stresses and principal
planes 296
c. Maximum in-plane shear stress 298
d. Summary of stress transformation
procedures 298
8.6 Mohr’s Circle for Plane Stress 305
a. Construction of Mohr’s circle 306
b. Properties of Mohr’s circle 307
c. Verification of Mohr’s circle 308
8.7 Absolute Maximum Shear Stress 314
a. Plane state of stress 315
b. General state of stress 316
8.8 Applications of Stress Transformation to
Combined Loads 319
8.9 Transformation of Strain; Mohr’s Circle for
Strain 331
a. Review of strain 331
b. Transformation equations for plane
strain 332
c. Mohr’s circle for strain 333
8.10 The Strain Rosette 338
a. Strain gages 338
b. Strain rosette 339
c. The 45 strain rosette 340
d. The 60 strain rosette 340
8.11 Relationship between Shear Modulus and
Modulus of Elasticity 342
CHAPTER 9
Composite Beams 349
9.1 Introduction 349
9.2 Flexure Formula for Composite
Beams 350
9.3 Shear Stress and Deflection in Composite
Beams 355
a. Shear stress 355
b. Deflection 356
9.4 Reinforced Concrete Beams 359
a. Elastic Analysis 360
* Indicates optional sections. b. Ultimate moment analysis 361
People also search for Mechanics of Materials 2nd:
mechanics of materials formula sheet
statics and mechanics of materials
advanced mechanics of materials
mechanics of materials 9th edition
mechanics of materials youtube
Reviews
There are no reviews yet.