Deep Learning 1st Edition by Ian Goodfellow, Yoshua Bengio, Aaron Courville – Ebook PDF Instant Download/Delivery: 9780262337373 ,0262337371
Full dowload Deep Learning 1st Edition after payment
Product details:
ISBN 10: 0262337371
ISBN 13: 9780262337373
Author: Ian Goodfellow, Yoshua Bengio, Aaron Courville
- An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Deep Learning 1st Edition Table of contents:
-
- Who Should Read This Book?
- Historical Trends in Deep Learning
- Applied Math and Machine Learning Basics
- Linear Algebra
- Scalars, Vectors, Matrices and Tensors
- Multiplying Matrices and Vectors
- Identity and Inverse Matrices
- Linear Dependence and Span
- Norms
- Special Kinds of Matrices and Vectors
- Eigendecomposition
- Singular Value Decomposition
- The Moore-Penrose Pseudoinverse
- The Trace Operator
- The Determinant
- Example: Principal Components Analysis
- Probability and Information Theory
- Why Probability?
- Random Variables
- Probability Distributions
- Marginal Probability
- Conditional Probability
- The Chain Rule of Conditional Probabilities
- Independence and Conditional Independence
- Expectation, Variance and Covariance
- Common Probability Distributions
- Useful Properties of Common Functions
- Bayes’ Rule
- Technical Details of Continuous Variables
- Information Theory
- Structured Probabilistic Models
- Numerical Computation
- Overflow and Underflow
- Poor Conditioning
- Gradient-Based Optimization
- Constrained Optimization
- Example: Linear Least Squares
- Machine Learning Basics
- Learning Algorithms
- Capacity, Overfitting and Underfitting
- Hyperparameters and Validation Sets
- Estimators, Bias and Variance
- Maximum Likelihood Estimation
- Bayesian Statistics
- Supervised Learning Algorithms
- Unsupervised Learning Algorithms
- Stochastic Gradient Descent
- Building a Machine Learning Algorithm
- Challenges Motivating Deep Learning
- Deep Networks: Modern Practices
- Deep Feedforward Networks
- Example: Learning XOR
- Gradient-Based Learning
- Hidden Units
- Architecture Design
- Back-Propagation and Other Differentiation Algorithms
- Historical Notes
- Regularization for Deep Learning
- Parameter Norm Penalties
- Norm Penalties as Constrained Optimization
- Regularization and Under-Constrained Problems
- Dataset Augmentation
- Noise Robustness
- Semi-Supervised Learning
- Multitask Learning
- Early Stopping
- Parameter Tying and Parameter Sharing
- Sparse Representations
- Bagging and Other Ensemble Methods
- Dropout
- Adversarial Training
- Tangent Distance, Tangent Prop and Manifold Tangent Classifier
- Optimization for Training Deep Models
- How Learning Differs from Pure Optimization
- Challenges in Neural Network Optimization
- Basic Algorithms
- Parameter Initialization Strategies
- Algorithms with Adaptive Learning Rates
- Approximate Second-Order Methods
- Optimization Strategies and Meta-Algorithms
- Convolutional Networks
- The Convolution Operation
- Motivation
- Pooling
- Convolution and Pooling as an Infinitely Strong Prior
- Variants of the Basic Convolution Function
- Structured Outputs
- Data Types
- Efficient Convolution Algorithms
- Random or Unsupervised Features
- The Neuroscientific Basis for Convolutional Networks
- Convolutional Networks and the History of Deep Learning
- Sequence Modeling: Recurrentand Recursive Nets
- Unfolding Computational Graphs
- Recurrent Neural Networks
- Bidirectional RNNs
- Encoder-Decoder Sequence-to-Sequence Architectures
- Deep Recurrent Networks
- Recursive Neural Networks
- The Challenge of Long-Term Dependencies
- Echo State Networks
- Leaky Units and Other Strategies for MultipleTime Scales
- The Long Short-Term Memory and Other Gated RNNs
- Optimization for Long-Term Dependencies
- Explicit Memory
- Practical Methodology
- Performance Metrics
- Default Baseline Models
- Determining Whether to Gather More Data
- Selecting Hyperparameters
- Debugging Strategies
- Example: Multi-Digit Number Recognition
- Applications
- Large-Scale Deep Learning
- Computer Vision
- Speech Recognition
- Natural Language Processing
- Other Applications
- Deep Learning Research
- Linear Factor Models
- Probabilistic PCA and Factor Analysis
- Independent Component Analysis (ICA)
- Slow Feature Analysis
- Sparse Coding
- Manifold Interpretation of PCA
- Autoencoders
- Undercomplete Autoencoders
- Regularized Autoencoders
- Representational Power, Layer Size and Depth
- Stochastic Encoders and Decoders
- Denoising Autoencoders
- Learning Manifolds with Autoencoders
- Contractive Autoencoders
- Predictive Sparse Decomposition
- Applications of Autoencoders
- Representation Learning
- Greedy Layer-Wise Unsupervised Pretraining
- Transfer Learning and Domain Adaptation
- Semi-Supervised Disentangling of Causal Factors
- Distributed Representation
- Exponential Gains from Depth
- Providing Clues to Discover Underlying Causes
- Structured Probabilistic Models for Deep Learning
- The Challenge of Unstructured Modeling
- Using Graphs to Describe Model Structure
- Sampling from Graphical Models
- Advantages of Structured Modeling
- Learning about Dependencies
- Inference and Approximate Inference
- The Deep Learning Approach to Structured Probabilistic Models
- Monte Carlo Methods
- Sampling and Monte Carlo Methods
- Importance Sampling
- Markov Chain Monte Carlo Methods
- Gibbs Sampling
- The Challenge of Mixing between Separated Modes
- Confronting the Partition Function
- The Log-Likelihood Gradient
- Stochastic Maximum Likelihood and Contrastive Divergence
- Pseudolikelihood
- Score Matching and Ratio Matching
- Denoising Score Matching
- Noise-Contrastive Estimation
- Estimating the Partition Function
- Approximate Inference
- Inference as Optimization
- Expectation Maximization
- MAP Inference and Sparse Coding
- Variational Inference and Learning
- Learned Approximate Inference
- Deep Generative Models
- Boltzmann Machines
- Restricted Boltzmann Machines
- Deep Belief Networks
- Deep Boltzmann Machines
- Boltzmann Machines for Real-Valued Data
- Convolutional Boltzmann Machines
- Boltzmann Machines for Structured or Sequential Outputs
- Other Boltzmann Machines
- Back-Propagation through Random Operations
- Directed Generative Nets
- Drawing Samples from Autoencoders
- Generative Stochastic Networks
- Other Generation Schemes
- Evaluating Generative Models
- Conclusion
- Bibliography
- Index
People also search for Deep Learning 1st Edition:
deep learning foundations and concepts 1st ed 2024 edition
deep learning for vision systems 1st edition
deep learning with python second edition pdf github
deep learning with python second edition 2nd edition
Reviews
There are no reviews yet.